
- Experimental and Preliminary -

Version 2.20 : 2011-10-06 Plugwise B.V. 1

Plugwise Template Engine

Title Plugwise Template Engine

Version 2.20

Date 2011-10-06

Product Source/PTE

Author TVR

Notes This is an experimental feature and is not considered as required
functionality. There will not be any support from the Plugwise helpdesk.

Bugs Please report your remarks and bugs to helpdesk@plugwise.com

Changes 0.94: While loop statement added
0.95: PlugwiseServer.exe added
0.96: File object added, additional properties for System object.
2.00: Big performance improvements
2.01: Added switching and usage members to Group en Room
2.02: Added Type and TypeText to Room
2.10: CRUD functionality for existing and new Plugwise classes
2.11: ‘ELSE IF’ is treated as ‘ELSEIF’.
 A ‘\n’ in a script file is always treated as a EOLN, with or without a ‘\r’.
 Implementation of functions (blocks are considered obsolete now)
 Functions can also be used to add custom methods to existing classes.

2.12: Support for sessions through non volatile array ‘Request.Session’.
 RegExp en Http classes added
 Apache style access logging
 AutoScript and AutoScriptInterval for periodically automated scripts
 File extension .PTE is supported so editors can recognize script files
2.13: Added to Array: Avg(), Sum(), Max(), Min(), Sort(), SortByKey(),
 Remove(), RemoveAt(), RemoveByKey()
 Log() added to Appliance, Group and Room
 Multi line comments using /* and */
 Added to DateTime: AddSeconds(), AddMinutes(), AddHours(),
 AddDays(), AddMonths(), AddYears()
2.14: Added to Module: FirmwareDate, FirmwareVersion, HardwareVersion
 Added to Network: GetModuleList()
 Added to System: LanAdapters
2.15: Web server is now multi threaded

Changed /sys/mimetypes.txt so html output is considered to be utf-8.
Icons of /pwimg/ are transparent PNG’s
Power usage graphs can be generated via /pwgraph/
Added to System: Execute(), ResetTimer()
Added PowerState to Group and Room
Added SetSchedule() to Appliance, Group and Room
Added to Plugwise: Currency, FeatureFlags, License, PersonalInfo, Register(), Restart(), ScanPorts(), SetLicense(),
SetPersonalInfo()
Added PeakDaysOfWeek and SetPeakDaysOfWeek() to Tariff

2.16: New type ‘Undefined’ added.
Changed type of unexisting array element to ‘Undefined’ instead of an empty string.
Added || operator to Array, DateTime, Float and String for default value assignments
Added System.SetCompatibility()
Added ‘emptyelement’ compatibility flag
Added optional TariffType parameter to .Log()
Added To Plugwise: .LogData(), .ColorScheme(), SetColorScheme()
Support for hexadecimal values like ‘0x80ff80’
Documentation /pwimg/ and /pwgraph/
Added Network.Quality

2.17: Added Module.Temperature, Module.Humidity and Room.TemperatureAndHumidity for Sense.
2.20: Implemented basic url rewriting with _catch404.pte

Added Request.Method
Added Group.SetBroadcast
Added Group.Type, Group.Typetext, Group.SetType()
Added Group.SetBroadcast()
Added .UUId to all Plugwise objects

mailto:helpdesk@plugwise.com

- Experimental and Preliminary -

Version 2.20 : 2011-10-06 Plugwise B.V. 2

Added Trigger object
Added Plugwise.Backup()
Added Module.LastTelegram
Added .SetExtra and .GetExtra()

- Experimental and Preliminary -

Version 2.20 : 2011-10-06 Plugwise B.V. 3

Contents

Introduction .. 4

Installation .. 4

The Basics ... 4

Handling of 404(_catch404.pte) ... 5

Variables ... 5

Casting .. 6

Array ... 7

Bool ... 8

DateTime .. 9

Float .. 10

String .. 11

Keywords .. 12

Engine objects .. 17

Plugwise Objects .. 19

Built-in icons ... 29

Generating graphs .. 29

General remarks ... 30

- Experimental and Preliminary -

Version 2.20 : 2011-10-06 Plugwise B.V. 4

Introduction
The Plugwise Source application has a built in lightweight multi threaded web server with a
simple object oriented template engine. This web server can be used to expose information
on the Plugwise system and switch appliances remotely by means of HTML pages or XML
feeds. Starting with version 2.1, full CRUD is supported, so you can change the configuration
of the system via scripting.

Note: Whether the web server is available and which functionality is enabled depends on the
license type of your Source application.

Installation
The web server is part of the Source application and does not require a separate installation.
It is automatically started if it is enabled in the Settings window, the given port number is
available and the specified ‘www’ folder exists.
These settings can be bypassed by specifying an ini file in the command line with

/httpdini=”path to ini”

Example:

; Example ini file

[server]

; port number to listen on

port=8080

; folder that contains the files to serve.

; it may be relative to the application startup folder

root=www

; user name for authentication

; if left blank, no authentication is required

user=admin

; MD5 hash of the password for authentication.

; the default is 'admin'

password=21232F297A57A5A743894A0E4A801FC3

; This script should be executed every 5 seconds

autoscript=dispatcher.pte

autoscriptinterval=5

[settings]

; Here you can specify your own configuration settings.

; Any parameter specified here is accessible within the scripts

; via the System.Settings array.

CompanyName=ACME inc.

CompanyColors=#ff00ff,#800080,#00FF00,#008000

There is also a dedicated application: PlugwiseServer.exe, which only runs the web server
and does not have the user interface of the Source. PlugwiseServer uses the same command
line parameters as Source.
Note: Source and PlugwiseServer cannot run at the same time.

The Basics
Any file requested by a client (i.e. web browser) that has one of the extensions ‘.css’, ‘.html’,
‘.htm’, ‘.txt’, ‘.xml’ or ‘.pte’ is parsed by the template engine and any text enclosed by ‘<%’

- Experimental and Preliminary -

Version 2.20 : 2011-10-06 Plugwise B.V. 5

and ‘%>’ tags is interpreted as statements. All characters outside these tags and files with
other extensions are literally passed through.

<html><body>

<%

 $mytext="Hello world"

%>

<h1><%=$mytext%></h1>

</body></html>

You can enclose multiple statements with the tags as long as they are separated by a line
break (end of line) or a semicolon ‘;’.

<html><body>

<%

 $mytext="Hello world" // everything on this line behind the ’//’ is ignored.

 Echo "<h1>", $mytext, "</h1>"; $a=5; Echo $a

%>

</body></html>

The default page for any folder is ‘index.pte’ or ‘index.html’.

Handling of 404(_catch404.pte)
If a requested url does not exists a 404-Page-not-found error is returned unless the server
finds a script called ‘_catch404.pte’. The server will try to find this file as deep in (the valid
part of) the requested path as possible and then up to the root. If it finds it, the script is
executed and the resulting url is handled instead of the requested.
Inside the script the original url is stored in $_script and the script should change this
variable to change the url to handle.

<%

 $_script="index.html" // redirect any 404 to the index page

%>

Except for session variables all variables are local and cannot be passed to other scripts.

Variables
Variables are dynamic and weak typed, what means that you do not need to declare them
and that they can change from one type to another depending on the last assignment.
All variables are treated as objects although there is a distinction between the value types
‘float’, ‘string’ and ‘bool’ and reference types like ‘array’ or ‘Appliance’. Value types have
their value copied from one variable to another, while reference types get only a reference
(pointer) to the object (their ‘value’).

<html><body>

<%

 $value1=1;

 $value2=$value1;

%>

Value1 = <%=$value1%>

Value2 = <%=$value2%>

<hr>

<%

 ++$value2;

%>

Value1 = <%=$value1%>

Value2 = <%=$value2%>

- Experimental and Preliminary -

Version 2.20 : 2011-10-06 Plugwise B.V. 6

<hr>

<%

 $ref1={'One','Two'};

 $ref2=$ref1;

%>

Ref1[1] = <%=$ref1[1]%>

Ref2[1] = <%=$ref2[1]%>

<hr>

<%

 $ref1[1]='Changed';

%>

Ref1[1] = <%=$ref1[1]%>

Ref2[1] = <%=$ref2[1]%>

</body></html>

The output will look like:

Value1 = 1
Value2 = 1

Value1 = 1
Value2 = 2

Ref1[1] = Two
Ref2[1] = Two

Ref1[1] = Changed
Ref2[1] = Changed

When operators are used on 2 values of different types, the second value is converted to the
same type as the first value.
For DateTime, Float and String variables the ‘||’ operator (logical OR) has a special function:
If the left value is Undefined, then the right value is used and the left value is ignored,
otherwise the left value is used and the right value is ignored.
So instead of

$param=Request.Get["myparam"]

if $param == undefined

 $param='some default'

/if

You can use

$param=Request.Get["myparam"] || 'some default'

Casting
To assign a value to a variable of a different type for example a float to a (formatted) string
you can use casting.

<%

 $f=12.345

 echo $f, ', ', String($f), ', ', String($f,'0.00'), '
'

 $d= DateTime('2007-06-01')

 echo $d, ', ', String($d), ', ', String($d,'yyyy MMM d'), '
'

 exit

%>

Result (depends on Windows’ language and region settings):

12.345, 12.345, 12,35

2007-06-01 00:00:00, 2007-06-01 00:00:00, 2007 jun 1

- Experimental and Preliminary -

Version 2.20 : 2011-10-06 Plugwise B.V. 7

Array
An array is an indexed list of values (elements). Arrays can be associative what means that
an element can not only be addressed by its index (number) but also by its key (string), if it
has one. Single elements can be accessed by specifying the index or key surrounded by
square brackets, ‘*’ and ‘+’ following the array value. The zero based index is created
automatically and may change every time the array is modified. Keys are case insensitive,
are assigned by statements and are valid until the associated array element is removed from
the array. Elements in the same array can be of different types.
An array is assigned by specifying the elements between curly brackets, separated by a
comma:

 $b={ 'One'=>'1', 2, 3, 'Four'=>'4' }

Or by assigning a single element:

 $b['Five']=5

The default for a nonexistent array element, is an Undefined value*. Use curly brackets or
Array.Fill() to preset array elements to other types and values.

$arr={0}; $arr[0]+=1; $arr[0]+=2;

echo $arr,'
'

$arr={}.Fill(0,1); $arr[0]+=1; $arr[0]+=2;

echo $arr,'
'

Outputs:
{ 3 }

{ 3 }

Operator Description Example Result

+

+=

Add one or more elements. $a={1}+{2,3}

$a+={4,5}
{1,2,3}

{1,2,3,4,5}

-

-=

Remove one or more elements.
If a key is given, the value is ignored.

$c=$a-{2,5}

$b-={'One'=>"Don't care"}
{0=>1,1=>3,2=>4}

{'One',2,3,'Four'=>'4'}

== Is Equal to.
Two arrays are equal if they have the
same number of elements and all
values in the first array exists in the
second array and vice-versa. The
indices and/or keys and the order of
the values are ignored.

$a=={'1'}

$a={3,1,2}

$b={1,2,3}

$a==$b

False

True

!= Is not equal to, reverse of ‘==’

|| Unless the left operant is Undefined,
ignore the right operant, otherwise
ignore the left operant.

$a = {{'a','b'}}

$d = $a[0] || {'x','y'}

$d = $a[2] || {'x','y'}

{'a','b'}

{'x','y'}

Member Description Example Result
Avg() The average of all the floats in the

array

{9,4,"xy",8}.Avg() 7

ClassName The class name of the object

ContainsKey(key) True if the array contains an
element with key key

ContainsValue(value) True if the array contains an
element with value value

Count Number of elements $a={"abc",5,"xy"};

$a.Count

3

Fill(value, count) Fills the array with count (copies

of) value. Existing elements are
removed.

$a.Fill(1,5).Count 5

First First element {"abc",5,"xy"}.First "abc"

IndexOf(value) Zero based index of the value
in the array. If the array does not

- Experimental and Preliminary -

Version 2.20 : 2011-10-06 Plugwise B.V. 8

contain the element, the result will
be -1.

GetUnique() Returns a copy of the array minus
the duplicate elements

{"abc",5,"xy",5}.GetUni

que()

{"abc",5,"xy"}

Join(sep) Concatenate all the values to one
string using sep as separator.

{"abc",5,"xy"}.Join(";"

)

"abc;5;xy"

Keys Array of all keys. For elements
without a key, the index is
returned.

{'One'=>'1','Two'=>'2',

7}.Keys

{'One','Two',2}

Last Last element {"abc",5,"xy"}.Last "xy"

Max() The largest of all floats in the
array.

{2,4,"xy",8}.Max() 8

Min() The smallest of all floats in the
array.

{2,4,"xy",8}.Min() 2

Remove(value) Removes any element from the
array that has a value equal to
value. The result is the array itself.

RemoveAt(index) Removes the element at position
index in the array. The result is the
array itself.

RemoveByKey(key) Removes the element that has the
string key as key. The result is the
array itself.

Reverse() Reverses the order of elements in
the array. The result is the array
itself.

Sort() Sorts the array by the values. The
result is the array itself.

$a= {'a'=>2,'c'=>6,1,'g'=>8,'i'=>76,'h'=>5,0,5,'b'=>4}

echo $a,'
';

{ 'a'=>2, 'c'=>3, 1, 'g'=>8, 'i'=>76, 'h'=>5, 0, 5, 'b'=>4 }

echo $a.Sort(),'
'

{ 0, 1, 'a'=>2, 'c'=>3, 'b'=>4, 5, 'h'=>5, 'g'=>8, 'i'=>76 }

echo $a.SortByKey(),'
'

{ 0, 1, 5, 'a'=>2, 'b'=>4, 'c'=>3, 'g'=>8, 'h'=>5, 'i'=>76 }

$a={'a'=>{'i'=>2,'j'=>8},'c'=>{'i'=>12,'j'=>18},1,'g'=>{'i'=>

9,'j'=>6},'i'=>{'i'=>4,'j'=>20},'h'=>5,'b'=>{'i'=>1,'j'=>12}}

echo $a.Sort('i'),'
'

{ 1, 'a'=>'{ 'i'=>2, 'j'=>8 }', 'i'=>'{ 'i'=>4, 'j'=>20 }',

'h'=>5, 'c'=>'{ 'i'=>12, 'j'=>18 }' }

echo $a.Sort('j'),'
'

{ 1, 'h'=>5, 'a'=>'{ 'i'=>2, 'j'=>8 }', 'c'=>'{ 'i'=>12,

'j'=>18 }', 'i'=>'{ 'i'=>4, 'j'=>20 }' }

Sort(subkey) The array members are expected
to be arrays too and the sorting is
based on their values for subkey. If
a member is not an array then its
(single) value is used in the sort.

SortByKey() Sorts the array by the keys. The
result is the array itself.

Sum() The sum of all floats in the array. {9,4,"xy",8}.Sum() 21

Values Array of all values. {'One'=>'1','Two'=>'2',

7}.Values

{'1', '2',7}

*
 In all versions before 2.16 a nonexistent array element returned an empty string. Backwards compatibility can be

assured with the ‘compatibility=emptyelement’ application flag or with a ‘System.SetCompatibility(‘emptyelement’,True)’
call, see also the System object.
This behavior can also be mimicked using the ‘||’ (logical OR) operator. See the Variables section and the operator tables
of the Array, String, Float or DateTime types.

Bool
Bool is short for Boolean. A Boolean value can only have one of two values: it is either ‘true’
or ‘false’.

Operator Description Example Result
== Is equal too $a=False;

$a==True

False

!= Is not equal to $a!=False True

! Logical NOT

&& Logical AND

|| Logical OR

- Experimental and Preliminary -

Version 2.20 : 2011-10-06 Plugwise B.V. 9

(bool)?expr1:expr2 If bool equals True the result
of the whole expression will be
the result of expr1. Otherwise

it will be the result of expr2.
Note: Because the engine lacks
operator precedence you must
enclose the bool expression
with round brackets.

$f=4

$s=($f==4)? "Yes" : "No"

"Yes"

Member Description Example Result
ClassName The class name of the object

DateTime
A DateTime is an object which contains a specific date and time and is used for date and
time calculations. When converted to a float, the resulting float contains the number of
seconds since the Gregorian date 0001-01-01 00:00:00. When converted to a string the
string has the sortable format “YYYY-MM-DD hh:mm:ss”.
A DateTime is assigned to a variable using a constructor

$d=DateTime([expression])

Where expression is a float representing the number of seconds since the Gregorian date
0001-01-01 00:00:00 or a string containing a date in the sortable format “YYYY-MM-DD
hh:mm:ss”. If expression is omitted, DateTime() returns the current date and time.

Operator Description Example Result

+

+=

Add a date or a number of seconds
Note: Since the first date is ‘0001-01-
01’, you must add 1 to the number of
years, months or days you want to
add when using the string format.

$d=DateTime();

$d2=$d+DateTime("0010-01-01");

$d2+=3600;

"2008-06-11 16:28:38"

"2017-06-11 16:28:38"

"2017-06-11 17:28:38"

-

-=

Subtract a date or a number of
seconds. See ‘+’.

$d-=DateTime("12:00:00");

"2008-06-11 04:28:38"

== Is Equal to. $d.Date==DateTime("2008-06-11") True

!= Is not equal to, reverse of ‘==’ $d!="2008-06-11" True

|| Unless the left operant is Undefined,
ignore the right operant, otherwise
ignore the left operant.

$a = {DateTime("2008-06-10")}

$d = $a[0] || DateTime()

$d = $a[2] || DateTime()

"2008-06-10 00:00:00"

"2008-06-11 16:28:38"

Member Description Example Result
DateTime()

DateTime(string)

DateTime(seconds)

The current date and time
Casts the string to a date
Casts the float seconds to a date

AddDays(days) Adds a number of days to the date.

AddHours(hours) Adds a number of hours to the date.

AddMinutes(minutes) Adds a number of minutes to the date.

AddMonths(months) Adds a number of months to the date.

AddSeconds(days) Adds a number of seconds to the date.

AddYears(days) Adds a number of years to the date.

ClassName The class name of the object

Date The date part $d=DateTime();

$dd=$d.Date;

"2008-06-11

16:28:38"

"2008-06-11

00:00:00"

Day The day of the month $dy=$d.Day; 11

Format(format) Formats the date to the given format.
‘format’ syntax is according to .Net
DateTime object.

Echo

DateTime().Format("yyyyMMdd

HHmmss");

20080611162838

Hour The hour of the day $h=$d.Hour; 16

- Experimental and Preliminary -

Version 2.20 : 2011-10-06 Plugwise B.V. 10

Minute The minute of the hour $mi=$d.Minute; 28

Month The month of the year $mo=$d.Month; 6

Second The second of the minute $s=$d.Second; 38

Time The time part $t=$d.Time; "0001-01-01

16:28:38"

TotalSeconds The seconds passed since 0001-01-01
00:00:00

$s=$d.TotalSeconds; 63348798518

UTC Convert to UTC Time $dd=$d.UTC "2008-06-11

14:28:38"

UTCSeconds The UTC equivalent in seconds since 1-
1-1970 (Unix epoch)

$utcsec=$dd.UTCSeconds 1213187318

WeekDay Day of the week based on Sunday as
day ‘0’

$wd=$d.WeekDay 3

Year Year of the date $y=$d.Year 2008

Float
A float represents a floating point numerical value and is the only numerical type the engine
supports. All numerical values are converted to floats. When an integer is required, the float
is rounded to the nearest integer. Hexadecimal numbers must be preceded by ‘0x’, ‘0xff’
equals ‘255’. To output a Float in hexadecimal format use String(float,”x”).

Operator Description Example Result

+

+=

Add $f=1+0.5

$f+=1

$f=5+"4"+3

$f="5"+4

1.5

2.5

48 \\=(5 + "43")

"54"

++ Increment by 1 ++$f 11

-

-=

Subtract $f=20-2

$f-=10

18

8

-- Decrement by 1 --$f 7

== Is equal too 1.5==2 False

!= Is not equal to 1.5!=2 true

> Greater than (case insensitive) 10>4 true

< Less than (case insensitive) 10<4 false

>= Greater than or equal to 2>=2 true

<= Less than or equal to 10<=4 false

*

*=

Multiply $f=5*4

$f*=-3

20

-60

/

/=

Divide $f=20/5

$f/=2

4

2

%

%/

Remainder (modulus) $f=20%7

$f%=4

6

2

&

&+

Binary AND $f=63&0x11

$f&=8

17

0

|

|=

Binary OR $f=0x87|14

$f|=18

143

159

^

^=

Binary exclusive OR (XOR) $f=15^7

$f^=15

8

7

|| Unless the left operant is Undefined,
ignore the right operant, otherwise
ignore the left operant.

$a = {12}

$d = $a[0] || 5

$d = $a[2] || 5

12

5

Member Description Example Result
Float(string) Casts a string to a float

ClassName The class name of the
object

Round([decimals]) Rounds the float to an
optional number of
decimals.
Default is no decimals.

String(format) Converts the float to a
string using the specified
format string.

- Experimental and Preliminary -

Version 2.20 : 2011-10-06 Plugwise B.V. 11

String
A string is the most common variable type since it normally contains readable text. Strings
must be enclosed by single ‘'’ or double ‘"’ quotations marks. Comparisons between strings
are case insensitive. When using double quotes special characters can be escaped using the
back slash ‘\’, i.e. \f (form feed), \n (new line), \r (carriage return), \t (tab), \\ (backslash), \"
(double quote). When using single quotes, only the single quote character can be escaped.

Operator Description Example Result

+

+=

Concatenate 2 strings $s='a'+'b'

$s='4'+5

$s=4+'5'

$s+='a'

"ab"

"45"

9

"45a"

-

-=

Remove all occurrences of the
second string from the first.

$s='Hello World'-'l'

$s-='o'
"Heo Word"

"He Wrd"

== Is equal too 'ab'=='aB' True

!= Is not equal to "ab"!="ba" True

> Greater than "ac">"ab" True

< Less than "ac"<"ab" False

>= Greater than or equal to "ab">="ab" True

<= Less than or equal to "ac"<"ab" False

*

*=

Concatenate a string multiple times $s="-"*4

$s*=2

"----"

"--------"

[index] The character at position index. If
index is negative, the position is
relative to the end of the string.

$s="abcdef"

$s[3]

$s[-1]

"d"

"f"

|| Unless the left operant is Undefined,
ignore the right operant, otherwise
ignore the left operant.

$a = {"abcdef"}

$d = $a[0] || "yxz"

$d = $a[2] || "yxz"

"abcdef"

"yxz"

Member Description Example Result
String(value)

String(value[,format])

Casts a value to a string
Casts a value to a string using
the specified format string.

ClassName The class name of the object

IndexOf(string) The zero based start position
of the first occurrence of
string

$s="Hello world";

$s.IndexOf("l");

2

LastIndexOf(string) The start position of the last
occurrence of string

$s.LastIndexOf("l") 9

Length The length $s.Length 11

Lower The lower case version $s.Lower "hello world"

MD5 The MD5 hash of the string

Replace(string1,

string2)

Replaces each occurrence of
string1 with string2

$s.Replace("o","0") "Hell0 w0rld"

Split(string [,int]) Split a string on separator
string to an optional
maximum of int

$s.Split("l")

$s.Split("l",2)

{0=>'He',1=>'',

2=>'o wor',3=>'d'}

{0=>'He',1=>'lo

world'}

Substring(int1

[,int2])

The string part starting from
int1 optionally with a
maximum length of int2. If

int1 is negative then the
start is relative to the end of
the string

$s.Substring(6)

$s.Substring (6,2)

$s.Substring (-4,2)

"world"

"wo"

"or"

Trim() Remove white spaces from
beginning and end of string

" Hello\n".Trim()

"Hello"

Upper The upper case version $s.Upper "HELLO WORLD"

UrlDecode() Decodes the URL encoded
string

$a="Hello <World>"

echo $a.UrlEncode()

Hello+%3cWorld%3e

UrlEncode URL encodes the string Echo

"Hello+%3cWorld%3e".Ur

lDecode()

Hello <World>

- Experimental and Preliminary -

Version 2.20 : 2011-10-06 Plugwise B.V. 12

Keywords

=

<%= expression %>

The equals character ‘=’ is not really a keyword but an assignment operator. However, if it
immediately follows the opening tag ‘<%’, the result of expression is converted to a string
and passed through to client.

Example Output
<%="Hello world" %>

<% $a=5 %>

<%=$a%>

Hello world

5

Block, /Block

*** Obsolete. Use ‘Function’ instead ***
<% Block string %>

…

<% /Block %>

Defines a script part (block) with name string to be used (executed) later with Write. The
part can contain anything except another block definition. Block and /Block must be

enclosed with their own tags.
Blocks are stored in the array System.Blocks

Example Output
<% Block "number" %>

The number is <%=$a%>

<% /Block %>

<%

 $a=5; Write System.Blocks["number"];

 $a=3; Write System.Blocks["number"];

%>

The number is 5

The number is 3

Echo

Echo string [, string] …

Writes to output. The result of expression string is written to output. Multiple expressions
can be written by separating them with a comma. This is faster than using the ‘+’ operator
and prevents unintentional type conversions

Example Output
<%

 Echo "Hello world!"

%>

Hello world!

Exit

Exit [string]

Terminates the script immediately and optionally outputs the message string.

Example Output
<%

 Echo "Hello world!"

Hello world

- Experimental and Preliminary -

Version 2.20 : 2011-10-06 Plugwise B.V. 13

 Exit;

 Echo "This is not shown"

%>

ForEach, [Continue], [Break], /ForEach

ForEach array

Loop

/ForEach

ForEach is a loop statement. For each element in the array resulting from expression

array, Loop is executed. Within Loop the execution of the current loop can be stopped
by Break and Continue; the first will exit the ForEach statement and continue the

script after /ForEach, while the latter will restart the loop with the next element, if there

is one, from the array. Break and Continue are optional and can occur more than once

within Loop.
Within Loop the index, key and value of the current element are copied to the variables
$_Index, $_Key, resp. $_Value.
ForEach constructs can be nested.

Example Output
<%

$a={'1'=>'One','2'=>'Two','3'=>'Three','4'=>'Four'}

ForEach $a

 if $_Index==1

 continue

 /If

%>

$a[<%=$_Index%>] = {<%=$_Key%>=><%=$_Value%>}

<%

if $_Value=='Three'

 break;

 /If

/Foreach

%>

$a[0] = {1=>One}

$a[2] = {3=>Three}

Format

Format name As format

Format gives a powerful method for outputting certain info in a consistent layout. Each

time a value is written to output with <%= value %> and with Echo , it is formatted

using the specified format. For formatting the rules of the C# method
String.Format() are used.

Example Output
<%

 $a={'a', 'c', 'd'}

 $b=1.574

 $f=1.574

 Echo "$a.Count=",$a.Count,"
"

 Echo "$b=",$b,"
"

 Echo "$f=",$f,"
"

 Format "Float.f" As "{0:0.0}"

 Format "Float" As "{0:0.00}" // All other floats!

 Format "Array.Count" As "'{0}'"

 Echo "$a.Count=",$a.Count,"
"

$a.Count=3

$b=1.574

$f=1.574

$a.Count='3'

$b=1,57

$f=1,6

- Experimental and Preliminary -

Version 2.20 : 2011-10-06 Plugwise B.V. 14

 Echo "$b=",$b,"
"

 Echo "$f=",$f,"
"

%>

Function [Return], /Function

<% Function name([argument1, …]) %>

…

[Return [expression]]

<% /Function %>

Defines a script part (function) that can be called from anywhere in the script as a statement
or as (part of) an expression. A function can contain anything except another function
definition. Within a function other functions and the function itself (recursion) can be called.
Function and /Function must be enclosed with their own tags. Use Return to exit
a function and optionally pass a value to the calling expression. More than 1 Return

statement can be used in the function body. Overloading is supported, which means you can
define 2 or more functions with the same name as long as their number of arguments are
different.
Variables within a function are always local; they are destroyed when the function exits.
Also, variables outside the function are not accessible inside the function.

Example Output
<% function Factorial($v1) %>

<% // Recursion example

 if $v1==0

 return 1

 /if

 return $v1 * Factorial($v1-1)

%>

<% /function %>

<% function ShowFactorial($v1) %>

<% // No result, just output

 echo '6! = ',Factorial(6),'
'

%>

<% /function %>

<%

 // Used as a statement

 ShowFactorial($v1)

%>

<% function Add($v1,$v2) %>

<% // simple function

 return $v1+$v2

%>

<% /function %>

<% function Add($v1,$v2,$v3) %>

<% // overloading example

 return $v1+$v2+$v3

%>

<% /function %>

<% function Devide($v1,$v2) %>

<% // termination example

 if ($v2==0)

 exit "Devision By zero!"

 /if

 return $v1/$v2

%>

<% /function %>

<%

 echo '7 + 3 = ', Add(7,3), '
'

 echo '7 + 3 + 5 = ', Add(7,3,5), '
'

 echo '7 / 3 = ', Devide(7,3), '
'

%>

6! = 720

7 + 3 = 10

7 + 3 + 5 = 15

7 / 3 = 2.33333333333333

- Experimental and Preliminary -

Version 2.20 : 2011-10-06 Plugwise B.V. 15

A function can also be used to add custom methods to existing classes by preceding the
function name with the class name and a period ‘.’
When the function (i.e. method) is called, the subject (the object) of the method is accessible
through the ‘$this’ variable.

Example Output
<% function Array.Avg2() %>

<% // Custom method example.

 // This is a simulation of

 // the built-in Avg() method

 $sum=0;

 $cnt=0;

 foreach ($this)

 if $_value.ClassName=="float"

 $sum+=$_value

 ++$cnt

 /if

 /foreach

 if $cnt==0

 Return Null

 /if

 return $sum/$cnt

%>

<% /function %>

<%

 $a={1,2,3,4,5,6,7,8,9,10}

 echo "The average is ", $a.Avg2(), '
'

%>

The average is 5.5

If, [ElseIf | Else If], [Else], /If

If bool1

 Part1

 [ElseIf bool2

 Part2

 …]

[Else

 Partx]

/If

‘If’ is a conditional statement. If expression bool1 results in True, then Part1 is
executed, the rest is skipped up till the /If. If bool1 results in False then Part2 is

executed only if bool2 results in True, the rest is skipped up till the /If. The ElseIf

clause can be repeated as many times as you want and can also be written as Else If. If
neither the If -expression and none of the ElseIf expressions were True, the Else
clause Partx is executed. The ElseIf and Else clauses are optional.

If’s can be nested.

Example Output
<%

 $a=3;$b=1

 Echo "$a is "

 if $a==2

 Echo "Two"

 elseif $a==3

 Echo "Three"

 if $b==1

 Echo " $b is One"

 /if

 else

$a is Three

$b is One

- Experimental and Preliminary -

Version 2.20 : 2011-10-06 Plugwise B.V. 16

 Echo "Some other value"

 /if

%>

Include

include path

Include includes the file path into the current page. The code in the include file is
processed as though it is part of the current page. This is especially useful for script parts like
block and format definitions which are reused in several pages.

While, [Continue], [Break], /While

While bool

Loop

/While

While is like ForEach a loop statement, but instead of looping through a predetermined

number of array elements it loops until the given Boolean expression bool, results in
False. Within Loop the execution of the current loop can be stopped by Break and
Continue; the first will exit the While statement and continue the script after /While,
while the latter will restart the loop at the point of evaluating expression bool. Break and
Continue are optional and can occur more than once within Loop.

While constructs can be nested.

Example Output
<%

$a={'1'=>'One','2'=>'Two','3'=>'Three','4'=>'Four'}

$ix=$a.Count

While $ix>0

 --$ix

 if $ix==1

 continue

 /If

%>

$a[<%=$ix%>] = {<%=$a[$ix]%>}

<%

 If $a[$ix]=='Three'

 break;

 /If

/While

%>

$a[3] = {Four}

$a[2] = {Three}

With, /With

With context

…

/With

Sets the current context to the result of the expression context. The context is the value to
witch undetermined members are associated. This is especially useful when working with
blocks. You can use the same block for objects that have the same member names as used
within the block.

Example Output
<%

 $a={'d'}

 $b={'a', 'c', 'd'}

 With $a

1

3

- Experimental and Preliminary -

Version 2.20 : 2011-10-06 Plugwise B.V. 17

 Echo .Count,"
"

 /With

 With $b

 Echo .Count,"
"

 /With

%>

Write

Write string [, string] …

Writes to output. The difference with Echo, is that with Write the result of expression string
is parsed by the engine as if it was a template file. This is why blocks should be written to
output with Write and not with Echo.

Example Output
<% Block "number" %>

The number is <%=$a%>

<% /Block %>

<%

 $a=5; Write System.Blocks["number"];

 $a=3; Echo System.Blocks["number"];

%>

The number is 5

The number is

Engine objects

File
Static object for common file functions.

Method Description Example Result
AppendLine(path,

string)

Adds a line to the end of a file. CR and LF characters
are added. If the file does not exist, it is created.

CreatePath(path) Creates all the directories in path.

Returns True if successful, False otherwise.

Date(path) Last modification date of a file

Delete(path) Deletes a file or directory.
Returns True if successful, False otherwise.
Note: If a directory is deleted all child directories
and files are delete too.

Exists(path) Returns True if the file exists, False otherwise.

IsDirectory(path) True if an existing directory

IsFile(path) True if an existing file

Move(path,

destination)
Move or rename a file or directory. destination
must be the full path to the new name. If
destination exists, it is deleted first.

Returns True if successful, False otherwise.

Read(path) Reads the contents of a text file into an array; one
line per element. The CR and/or LF characters are
trimmed.

Size(path) The length in bytes of a file

Write(path,

array)

Writes an array to a file. One line for each element.
CR and LF characters are added.

Http
Http is used to retrieve (remote) web pages or data.

Method Description Example Result
Get(url) Returns the result of a HTTP-GET request to

url

Get(url, data) Sends the array data as form data in a

- Experimental and Preliminary -

Version 2.20 : 2011-10-06 Plugwise B.V. 18

HTTP-POST request to url and returns the
result.

DoRequest(url, method,

contenttype, data)

Sends an HTTP request to the url using given
http method and content type.

UrlEncode(data) URL-encodes a string

UrlDecode(data) Decodes an URL-encoded string

Math
Math is a static object is has no value, only members and is used for mathematical
calculations.

Method Description Example Result

Abs(float) The absolute value of float $d=Math.Abs(-5); 5

Ceil(float) The smallest integer greater than or equal to float Math.Ceil(-5.3)

Math.Ceil(5.3)

-5

6

E The natural logarithmic base e

Floor(float) The largest integer less than or equal to float Math.Ceil(-5.3)

Math.Ceil(5.3)

-5

6

Max(float1,

float2)

The larger of 2 values

Min(float1,

float2)

The smaller of 2 values

Pi The ratio of the circumference of a circle to its
diameter: π.

Pow(float1,

float2)

The power of float1 to float2

Round(float) The rounded value of float

Sign The signing of a number:
-1: float <0
 0: float==0
 1: float>0

RegEx
RegEx enables the use of regular expressions.

Method Description Example Result
Match(expr, subject) Matches the regular expression expr

on the string subject and returns
the first match as an array. The first
element contains the full match, the
following elements contain the sub
matches, if there were any.

Matches(expr, subject) Similar to Match(),but returns all the
matches.

Request
Request gives access to the HTTP request information.

Method Description Example Result
Base Base url of the request Request.Base 'http://localhost:8080'

Cookies Array of client cookies

Get Array of values from the query string

Headers Array of the HTTP headers of the request Request.Headers[

'host']

'localhost:8080'

Post Array of form values from the POST data.
Currently only content type '
application/x-www-form-

urlencoded’ is supported.

Query Full query string of the request Request.Query '?cmd=test'

RawPost String with the raw POST data.

SendCookie(name,

value)

Add or replace a cookie to/in the response

SendHeader(name, Add an HTTP header to the response

- Experimental and Preliminary -

Version 2.20 : 2011-10-06 Plugwise B.V. 19

value)

Session Non volatile array that can be used to pass data
between requests of the same client (session).
Sessions expire when Source terminates

Url Url of the request Request.Url 'http://localhost:8080/test.

html'

User Authenticated user name Request.User 'admin'

System
System is the main object of the template engine.

Method Description Example Result
Blocks Array of all the defined blocks See Write

Compatibility(st

ring)

Returns the value of a compatibility flag.
Flags can be:

- ‘EmptyElement’: nonexisting array elements return an empty String instead of a Undefined.
SetCompatibility(strin

g, bool)
Set or clear a compatibility flag

DataFolder Local path to the application data
folder

System.DataFolder C:\Documents and

Settings\me\Application Data

Date String with current local date System.Date 16-06-2008

EnvVars Array of the systems environment
variables

Execute(

program,

[arguments,

[directory]])

Starts a program on the computer
where Source is running.
Note: If you a start a program that
requires administrator rights, the
computer locks up with a message
box, that requires user interaction.

System.Execute(

"cmd.exe",

"/c \a")

Sounds a beep.

LanAdapters Array with info about the networks
adapters of the PC

System.LanAdapters[0] {

'MACAddress'=>'00:1d:09:42:10:

47',

'IP6Address'=>

'fe:80:00:00:00:00:00:00:ad:bc

:15:14:cc:3c:12:f3',

'IPAddress'=>'10.0.2.138',

'IPMask'=>'255.255.255.0',

'Gateway'=>'10.0.2.254',

'Name'=>'LAN-verbinding',

'Description'=>'Broadcom

NetXtreme 57xx Gigabit

Controller',

'Type'=>'Ethernet' }

Path Local path to the server root folder
C:\Program

Files\Plugwise\Plugwise

Source\www

Settings Array with all the name-value pairs as
specified in the ini file under the
[Settings] category.

TempFolder Path to the temporary files folder System.TempFolder C:\Documents and

Settings\me\Local

Settings\Temp

Time String with current local time System.Time 21:37:33

Version Version string of the engine System.Version 2.1

Plugwise Objects

Note: An asterix (‘*’) in the first column means that that functionality is only available in the
Pro version.

Plugwise
The Plugwise object is the root object of all the Plugwise system objects.

 Method Description Example Result
 Appliances Array of all the appliances with their Id as

key.

* Backup(path) Saves a backup of the current database to
the specified path.

 ClassName The class name of the object

 ColorScheme Returns the current color scheme for

- Experimental and Preliminary -

Version 2.20 : 2011-10-06 Plugwise B.V. 20

graphs or the default if none is set.
 SetColorScheme(array) Sets the color scheme for graphs. Array

does not need to contain all colors, just
the ones you want to change from the
default.
Use Null to reset to default.

Plugwise.SetColorScheme(

{"background"=>0x004000})

Plugwise.SetColorScheme(Null)

* CreateAppliance(name) Creates a new appliance

* CreateGroup(name) Creates a new group

* CreateModule(name) Creates a new module

* CreateNetwork(name) Creates a new network

* CreateRoom(name) Creates a new room

* CreateSchedule(name) Creates a new schedule

* CreateTariff(name) Creates a new tariff

 Currency The used currency symbol in Source Echo Plugwise.Currency €

 DayCodes Array of the short week day codes, used
for schedules.

Echo Plugwise.DayCodes { 0=>'su'

1=>'mo',

2=>'tu',

3=>'we',

4=>'th',

5=>'fr',

6=>'sa' }

 FeatureFlags The licensed features of Source Echo

Plugwise.FeatureFlags

{'W','X'}

 Groups Array of all the groups with their Id as key.

 ImagesPath Virtual path to dynamic images <img

src="<%=Plugwise.Image

sPath%>32/<%=.ImageNam

e%>.png">

<img

src="/pwimg/

32/appliance

.png">

 Language Current language code of application Echo Plugwise.Language Nl

* LanAdapters Array of all the active LAN adapters of the
system

 License The product license string

* Logdata(array,

startdate [, enddate

[, tarifftype]])

Returns an array with the log data of type
tarifftype of the appliances in array for
the specified date or period.
tarifftype can be 1 for usage or 257 for
production. Default is 1

* SetLicense(string) Sets the license with the given key.
No other license may be active and the
given key must be valid.
Result: True if the new license is valid.

SetPersonalInfo({

'FirstName'=> 'Fred',

'LastName'=>'Flintstone' })

 Modules Array of all the modules with their Id as
key.

 Networks Array of all the networks with their Id as
key.

 PersonalInfo Array of all personal info settings

* SetPersonalInfo(array) SetPersonalInfo({

'FirstName'=> 'Fred',

'LastName'=>'Flintstone' })

* Register() Registers current license, personal info
and modules at Plugwise server.

 Restart() Registers current license, personal info
and modules at Plugwise server.

 Rooms Array of all the rooms with their Id as key.

 ScanPorts([array]) Scan the given ports for Plugwise Stick. If
no array is given, all COM ports are
scanned.
Result: array of found Networks.

 Schedules Array of all the schedules with their Id as
key.

 Tariffs Array of all the tariffs with their Id as key.

 Version Application version of Source

Appliance

The Appliance object is the representation of the ‘Appliance’ entity in the application.
All returned information is ‘last known’, not necessarily ‘current’. This prevents page delays
as a result of slow communication or offline modules.
An existing appliance object can be obtained in 3 different ways

- Experimental and Preliminary -

Version 2.20 : 2011-10-06 Plugwise B.V. 21

 $app = Appliance(name)

 $app = Appliance(id)

 $app = Plugwise.Appliances[index]

A new appliance object can be created by
 $app = Plugwise.CreateAppliance(name)

and deleted with
 Plugwise.DeleteAppliance(appliance)

 Method Description Example Result
 ClassName The class name of the object

 DoNotSwitchOff True if the appliance is flagged not to switch
off.

 SetDoNotSwitchOff(bool)

 FirstSeenDate

First moment the module was online after it
was attached to the appliance. This is also the
start point for logging of the appliance.

* SetFirstSeenDate(dateTime)

* GetExtra(name, default)

Retrieve custom info name for this object
from database or use default if name is not
set.

* SetExtra(name, value)

 Id Internal ID of the appliance

 IsOff True if the (module of the) appliance is
switched off.

 IsOn True if the (module of the) appliance is
switched on.

 IsOnline True if the (module of the) appliance is
online.

 ImageName Name of the virtual image file

 LastSeenDate Timestamp of last contact

 LastSeenSeconds Seconds past since last contact

* Log(startdate [, enddate [,

tarifftype]])

Returns the log data of type tarifftype of the
appliance for the specified date or period.
tarifftype can be 1 for usage or 257 for
production.

 Module Module to which the appliance is attached

 Name Name of the appliance

 SetName(string)

 NotInNetwork True if the appliance is (temporarily) not
part of the network and should be ignored.

 SetNotInNetwork(bool)

 PowerState Power state of the appliance: ‘on’ or ‘off’

 PowerUsage Last known power usage

 Schedule Assigned schedule or Null

* SetSchedule(schedule) Assign a schedule or Null to unassign.

 SkipInTotals Ignore this appliances when summarizing
usage, totals etc for lists of appliances. For
instance with Group.TotalUsage.

 SetSkipInTotals(bool)

 StatusImageName Name of the virtual image that includes the
status

<img

src="<%=Plugw

ise.ImagesPat

h%>32/<%=.Sta

tusImageName%

>.png">

<img

src="/pwimg/

32/appliance

_on.png">

 SwitchOff() Switch the (module of the) appliance off

 SwitchOn() Switch the (module of the) appliance on

 TotalUsage Total power usage since the last counter reset.
Setting this value by script will not reset the
TotalUsageStartDate

 SetTotalUsage(float)

 TotalUsageStartDate Date from witch on TotalUsage is calculated.

 SetTotalUsageStartDate(date)

 TotalUsageToday Total power usage for today

 Type Appliance type

- Experimental and Preliminary -

Version 2.20 : 2011-10-06 Plugwise B.V. 22

 SetType(string)

 TypeText Appliance type translated to the current
language

 UUId Universally Unique IDentifier

Group
The Group object is the representation of the ‘Group’ entity in the application.
An existing group object can be obtained in 3 different ways
 $grp = Group(name)

 $grp = Group(id)

 $grp = Plugwise.Groups[index]

A new group object can be created by
 $grp = Plugwise.CreateGroup(name)

and deleted with
 Plugwise.DeleteGroup(group)

 Method Description Example Result
* Add(appliance) Adds appliance to the group

 Appliances Array of appliances which are member of the group

 BroadcastMacAddress The virtual MAC Address of the groups used for
broadcasts. Can be empty; no broadcasts used.

 SetUseBroadcast(bool) Use broadcasts for switching all appliances in the group
or not.

 ClassName The class name of the object

* GetExtra(name, default)

Retrieve custom info name for this object from
database or use default if name is not set.

* SetExtra(name, value)

 Hidden

True If the group is not visible in any screen except
the Groups screen.

 SetHidden(bool)

 Id Internal ID of the group

* Log(startdate [, enddate

[, tarifftype]])

Returns the log data of type tarifftype of the group’s
appliances for the specified date or period.
tarifftype can be 1 for usage or 257 for production.

 Name Name of the group

 SetName(string)

 PowerState Off if all the modules attached to the room’s
appliances that are online and do not have the

NotInNetwork flag are switched off. Otherwise On

 PowerUsage Total of the group’s appliances last known power
usage.
Note: Appliances with SkipInTotals flag set are
ignored. Unless all appliances of the group have this
flags set, then the flag is ignored.

* Remove(appliance) Removes appliance from the group

 Schedule Assigned schedule or Null

* SendSchedules() For each assigned appliance send its schedules or
disable if it has none.

* SetSchedule(schedule) Assign a schedule or Null to unassign.

 SwitchOn() Switch on the (modules of the) appliances assigned to
the group

 SwitchOff() Switch off the (module of the) appliances assigned to
the group

 TotalUsage Total power all the appliances usage since their last
counter reset.
Note: Appliances with SkipInTotals flag set are
ignored. Unless all appliances of the group have this
flags set, then the flag is ignored.

 TotalUsageToday Total power all the appliances usage for today.
Note: Appliances with SkipInTotals flag set are
ignored. Unless all appliances of the group have this
flags set, then the flag is ignored.

 Type Type of the group

- Experimental and Preliminary -

Version 2.20 : 2011-10-06 Plugwise B.V. 23

* SetType(typename) Set the type of the group: possible values are ‘report’,
‘application’ and ‘switching’.
Note: If type is ‘report’ the Hidden flag is set to False.

For other values it is set to True.

 TypeText Translated name for type of the group

 UUId Universally Unique IDentifier

Module

The Module object is the representation of the ‘Module’ or ‘Plug’ entity in the application.
All returned information is ‘last known’, not necessarily ‘current’. This prevents page delays
as a result of slow communication or offline modules. Exceptions are CloseRelay(),
OpenRelay() and GetPowerUsage(). They will wait until a valid answer is received or the given
timeout has expired.
An existing module object can be obtained in 3 different ways
 $mod = Module(name)

 $mod = Module(macaddress)

 $mod = Module(id)

 $mod = Plugwise.Modules[index]

A new module object can be created by
 $mod = Plugwise.CreateModule(macaddress)

and deleted with
 Plugwise.DeleteModule(module)

 Method Description Example Result
 Appliance The assigned appliance

* Add(appliance) Attaches the module to the
appliance. A module can only be
attached to 1 module and vice versa.

 ClassName Class name of the object

 CloseRelay(timeout,

retries)

Close the relay; switch on the
connected appliance. The result is
True if the module did close the
relay.
Note: The maximum possible ‘hang
time’ for the command is timeout *
(retries+1) seconds.

<%

$modid=Request.Get["modid"]

$mod=Plugwise.Modules[$modid]

if $mod.IsOpen

 $res= $mod.CloseRelay(4,0)

else

 $res= $mod.OpenRelay(4,0)

/if

if $res

 echo "Module switched to: ",$mod.RelayState,"
"

else

 echo "Module switching failed!
"

/if

%>
 FirmwareDate Timestamp of firmware.

 FirmwareVersion Version string of firmware

 FirstSeenDate Timestamp of first contact.

* SetFirstSeenDate(dateTime)

 FirstSeenLogIndex Current internal logging index of the
module at the time of
FirstSeenDate

* SetFirstSeenLogIndex(int)

* GetExtra(name,

default)

Retrieve custom info name for this
object from database or use default if
name is not set.

* SetExtra(name, value)

* GetInfo(timeout,

retries)

Requests the node info from the
module. The result is True if the
module did return the node info
usage or. The new info is used to
update the module’s properties.

- Experimental and Preliminary -

Version 2.20 : 2011-10-06 Plugwise B.V. 24

 GetPowerUsage(timeout,

retries)

Requests the current measured
power usage of the module. The
result is True if the module did
return the usage or if a power usage
request is pending, because the relay
just closed. The new value is stored in
PowerUsage.

 HardwareVersion Version string of hardware

 Humidity Sense: Last reported humidity

 Id Internal ID of the module

 IsClosed True if the relay of module is closed
(power is on).

 IsOnline True if the module is online.

 IsOpen True if the relay of module is open
(power is off).

 ImageName Name of the virtual image file

 LastCompletedLogIndex Oldest internal logging index of the
module of which all data is retrieved
and processed.

* SetlastCompletedLogIndex(int)

 LastSeenDate Timestamp of last contact

 LastSeenSeconds Seconds past since last contact

 LastTelegram If the module is a P0 or P1 reader,
this is the last received telegram from
the meter

 MacAddress MAC address (hardware address) of
the module.

 Name Name of the module

 SetName(string)

 Network Network the module is member off.

 OpenRelay(timeout,

retries)

Open the relay; switch off the
connected appliance. The result is
True if the module did open the
relay.

See CloseRelay()

 PowerUsage Last known power usage

 RelayState Switch state of the relay: ‘open’ or
‘closed’

* Remove(appliance) Detaches the appliance from the
module.

 Status Status of the module: ‘online’,
‘offline’ of ‘unknown’

 StatusImageName Name of the virtual image that
includes the status

<img

src="<%=Plugwise.Imag

esPath%>32/<%=.Status

ImageName%>.png">

<img

src="/pwimg/32/app

liance_on.png">

 Type Module type

* SetType(type)

 Temperature Sense: Last reported temperature

 TypeText Module type translated to the
current language

 UUId Universally Unique IDentifier

Network

The Network object is the representation of the ‘Network entity in the application. Normally
the Network entity is only shown when the application controls more than 1 network.
An existing network object can be obtained in 3 different ways
 $netw = Network(name)

 $netw = Network(macaddress)

 $netw = Network(id)

 $netw = Plugwise.Networks[index]

A new network object can be created by
 $netw = Plugwise.CreateNetwork(macaddress)

and deleted with

- Experimental and Preliminary -

Version 2.20 : 2011-10-06 Plugwise B.V. 25

 Plugwise.DeleteNetwork(network)

 Method Description Example Result
* Add(module) Assigns the module to the network. A

module can only be assigned to 1
network.

 ClassName Class name of the object

* ExpectedOnlineCount Number of modules that should be
online excluding SEDs and those that are
flagged ‘NotInNetwork’.

* GetExtra(name,

default)

Retrieve custom info name for this object
from database or use default if name is
not set.

* SetExtra(name, value)

* GetModuleList() Returns a list of modules known to the
NC.
Note: This action blocks the webserver
for at least 30 seconds.

 Id Internal ID of the module

 ImageName Name of the virtual image file

 MacAddress MAC address (hardware address) of the
module.

 MC The Stick module of the network

 Modules Array of modules which are assigned to
the network

 Name Name of the network

 SetName(string)

 NC The Circle+ module of the network

* OnlineCount Number of online modules excluding
SEDs and those that are flagged
‘NotInNetwork’.

 PowerUsage Total of last known power usage of all
modules.

* Quality Percentage of online modules excluding
SEDs and those that are flagged
‘NotInNetwork’.

* Remove(appliance) Detaches the appliance from the module.

 Schedule Assigned schedule or Null

 Status Status of the network: ‘online’, ‘offline’

 StatusImageName Name of the virtual image that includes
the status

<img

src="<%=Plugwise.Images

Path%>32/<%=.StatusImag

eName%>.png">

<img

src="/pwimg/32/app

liance_on.png">

 SwitchOn() Switch on the all modules in the network

 SwitchOff() Switch off the all modules in the network

 UUId Universally Unique IDentifier

Room
The Room object is the representation of the ‘Room’ entity in the application.
A new room object can be created with
 $room = Plugwise.CreateRoom(name)

An existing room object can be obtained in 3 different ways
 $room = Room(name)

 $room = Room(id)

 $room = Plugwise.Rooms[index]

and deleted with
 Plugwise.DeleteRoom(room)

 Method Description Example Result
 Appliances Array of appliances which are assigned to the room

* Add(appliance) Assigns the appliance to the room

 ClassName The class name of the object

- Experimental and Preliminary -

Version 2.20 : 2011-10-06 Plugwise B.V. 26

* GetExtra(name,

default)

Retrieve custom info name for this object from database or
use default if name is not set.

* SetExtra(name, value)

 Id Internal ID of the room

* Log(startdate [,

enddate [, tarifftype

]])

Returns the log data of type tarifftype of the room’s
appliances for the specified date or period.
tarifftype can be 1 for usage or 257 for production.

 Name Name of the room

 SetName(string)

 PowerState Off if all the modules attached to the room’s appliances
that are online and do not have the NotInNetwork flag are

switched off. Otherwise On

 PowerUsage Total of the appliances last known power usage.
Note: Appliances with SkipInTotals flag set are ignored.
Unless all appliances of the room have this flags set, then
the flag is ignored.

* Remove(appliance) Removes appliance from the room

* SendSchedules() For each assigned appliance send its schedules or disable if
it has none.

 SwitchOn() Switch on the (modules of the) appliances assigned to the
room

 SwitchOff() Switch off the (module of the) appliances assigned to the
room

 TotalUsage Total power all the appliances usage since their last counter
reset.
Note: Appliances with SkipInTotals flag set are ignored.
Unless all appliances of the room have this flags set, then
the flag is ignored.

 TotalUsageToday Total power all the appliances usage for today.
Note: Appliances with SkipInTotals flag set are ignored.
Unless all appliances of the room have this flags set, then
the flag is ignored.

 TemperatureAndHumidity Array with last reported temperature and humidity or the
average if more than one Sense are linked to the room.

 Type Room type id

 SetType(string) Room type id

 TypeText Room type translated to the current language

 UUId Universally Unique IDentifier

Schedule
The Schedule object is the representation of the ‘Switching schedule’ entity in the
application.
A new schedule object can be created with
 $sched = Plugwise.CreateSchedule(name)

An existing schedule object can be obtained in 3 different ways
 $sched = Schedule(name)

 $sched = Schedule (id)

 $sched = Plugwise.Schedules[index]

and deleted with
 Plugwise.DeleteSchedule(schedule)

 Method Description Example Result
 Appliances Array of appliances to which the schedule has been

assigned directly.

* GetExtra(name,

default)

Retrieve custom info name for this object from
database or use default if name is not set.

* SetExtra(name, value)

 AssignedAppliances Array of appliances to which the schedule has been
assigned directly or indirectly via a group or room.

 Groups Array of groups to which the schedule has been
assigned.

- Experimental and Preliminary -

Version 2.20 : 2011-10-06 Plugwise B.V. 27

 Name Name of the group

 SetName(string) Name of the group

* Send() Sends the schedule to the (modules of) the assigned
appliances. The method returns immediately, the
sending is done in the background.
The result value is the number of modules affected by
the new schedule.

 StatusImageName Name of the virtual image that includes the status

 Values Array of 7 arrays (days) with 96 values (4 quarters * 24
hours). -1 means ‘On’, 0 means ‘ Off’, any positive
value represents the standby value.
The keys of the 7 arrays are “mo”, ”tu”, “we”, “th”,
“fr”, “sa”, “su” and are available via
Plugwise.DayCodes

* SetValues(array)

 UUId Universally Unique IDentifier

Tariff
The Tariff object is the representation of the ‘Tariff’ entity in the application.
A new tariff object can be created with
 $tar = Plugwise.CreateTariff(name)

An existing tariff object can be obtained in 4 different ways
 $tar = Tariff(name)

 $tar = Tariff(id)

 $tar = Tariff(Date[,type])

 $tar = Plugwise.Tariffs[index]

and deleted with
 Plugwise.DeleteTariff(tariff)

 Method Description Example Result
 ClassName The class name of the object

 CO2Emission CO2 emission in kg per kWh

* SetCO2Emission(float)

 CompanyName Company name property

 SetCompanyName(string)

 EndDate End date of the tariff period

* SetEndDate(date)

* GetExtra(name,

default)

Retrieve custom info name for this object from
database or use default if name is not set.

* SetExtra(name, value)

 HasPeakTariff Tariff has a split tariff structure

 Id Internal ID of the tariff

 IsPeakTime(date) True if the peak tariff should be used for the
given timestamp. date must be between with
the tariff’s start and end date.

 IsProducing True if the tariff is for producing energy (Type
>= 256)

 Name Name of the tariff

 SetName(string)

 PeakDays Array of 2 letter day of week codes on which the
peak tariff should be used.

* SetPeakDays(array)

 PeakEndHour Last hour of the daily peak period, 0 to 23

* SetPeakEndHour(hour)

 PeakStartHour First hour of the daily peak period, 0 to 23
-1 means no peak period

* SetPeakStartHour(hour)

 PeakTariff kWh rate during peak time

* SetPeakTariff(float)

 ProductName Product name

* SetProductName(string)

- Experimental and Preliminary -

Version 2.20 : 2011-10-06 Plugwise B.V. 28

 StartDate Start date of the tariff period

* SetStartDate(date)

 Tariff kWh rate for normal or off-peak time

* SetTariff(float)

 Type tariff type id

* SetType(int)

 TypeText Tariff type translated to the current language

 UUId Universally Unique IDentifier

Trigger
The Trigger object is the representation of the ‘Trigger’ entity in the application. It is linked
to an event of a module like pressing a Switch button or detecting movement by a Scan.
A new trigger object cannot be created via PTE. It is automatically created for the
corresponding Switch, Sense or Scan when fired (button pressed, movement detected etc.).

An trigger object can be obtained in 3 different ways
 $tgr = Trigger(name)

 $tgr = Trigger(id)

 $tgr = Plugwise.Triggers[index]

 Method Description Example Result
 ClassName The class name of the object

 Group The group to which the trigger is linked, if any

* GetExtra(name,

default)

Retrieve custom info name for this object from
database or use default if name is not set.

* SetExtra(name, value)

 SetGroup(string)

 Id Internal ID of the trigger

 Module The module to which the trigger belongs to

 Name Name of the trigger

 SetName(string)

 Type Trigger type id (same as the module type)

 TypeText Trigger type translated to the current language

 UUId Universally Unique IDentifier

- Experimental and Preliminary -

Version 2.20 : 2011-10-06 Plugwise B.V. 29

Built-in icons
The built icons in Source can be accessed via the url /pwimg/size/name.png as transparent
PNG images. In a script you can use Plugwise.ImagesPath as the base path. The ‘size’
parameter is the width and height of the icon like 20, 32 or 48. All icons are square. The
‘name’ can include the status like ‘on’, ‘off’ or ‘locked’. The StatusImageName property of
Appliance or Module, contains the full icon name, including the status.

<%

foreach Plugwise.Appliances

 echo .Name,': ',.StatusImageName,'
'

/foreach

%>

Generating graphs
The same graphs as shown in the Reports screen of Source can be generated via the url
/pwgraph/?parameters. In a script you can use Plugwise.GraphsPath as the base path. For
‘parameters’ see following table. Except ‘width’ and ‘height’, all parameters are optional.

Parameter Purpose Default

from=date Start date of the period in format YYYY-MM-DD today

to=date End date of the period in format YYYY-MM-DD Same as start date

interval=interval Data interval: y = year, m = month, w = week, d = day, h = hour hour

view=type Type of view: u = usage/production, e = CO2 emission, c = costs. usage/production

legend=show Show or hide the graph’s legend: 1 or on = show, 0 or off = hide show legend

title=text Title on graph no title

zoom=factor Resize graph by factor. Using a factor < 1 gives better image quality than letting the
browser resize the image on display.

1, no resizing

appids=ids List of comma separated appliance ids for which to show the graph. all appliances

grpids=ids List of comma separated group ids for which to show the graph. all appliances

rmids=ids List of comma separated room ids for which to show the graph. all appliances

width=width Width of graph in pixels. mandatory

height=height Height of graph in pixels. mandatory

A custom color scheme for the graph can be set with the Plugwise.SetColorScheme(array)
method (see also the Plugwise object in this document). The color scheme is only valid
within the same session, so different users can have different color schemes at the same
time.
A color represents an ARGB value, this is a 32 bit value where the highest 8 bits define the
alpha component (transparency), the following 8 bits the red component, next the green
component and then the blue component. For example, 0x00ff0000 represents red, 0xff
represents blue and 0x80ffffff is half transparent white.

Name Purpose Default

background Background color 0xffffff (white)

edge Edge of the graph 0xffffff (white)

border Border of the image 0xffffff (white)

grid Grid (horizontal reference lines) in graph 0xd0d0d0 (light grey)

labels Text labels 0x000000 (black)

usage Usage representation, also off-peak 0x8d96c8 (blue)

production Production representation, also off-peak 0x8dc78f (green)

peakusage Peak usage representation 0xbac9ff (light blue)

peakproduction Peak production representation 0x9bff97 (light green)

totalusage Total usage line 0x800000 (red)

totalproduction Total production line 0x8000 (green)

- Experimental and Preliminary -

Version 2.20 : 2011-10-06 Plugwise B.V. 30

To prevent unnecessary processing, the webserver uses a simple caching mechanism. Every
served graph is saved for 1 minute based on the request string. When a graph is requested
the webserver will look for a cached image of less than 1 minute old, that was generated
with exactly the same request string and colorscheme. If found, the existing image is server,
if not, a new graph is generated, saved and served.

General remarks

Operator precedence
The engine does not (yet) support operator precedence; i.e. ‘multiply’ ‘*‘ normally has
precedence over ‘add’ ‘+’. Instead expressions are evaluated from right to left. Use round
brackets to assure the correct order in calculations.

Example Result
$a=5+4*3 17

$a=4*3+5 32

$a=(4*3)+5 17

Forms
When using HTML POST forms, you can combine form fields in an array by using square
brackets in the field name:

<html><body><%

// set to posted values or an empty array

$cks=Request.Post['ck'] || {}

echo $cks // Show the contents of the array

$flds={'One','Two','Three'}

%><form method="POST" ><%

foreach $flds

 $v='chk_'+$_Index

 // keep the checkboxes checked that were checked by the user

%><%=$_Index%>

 <input type="checkbox" name="ck[]" value="<%=$v%>" <%=$cks.ContainsValue($v)?'

checked':''%>>

 <%=$_Value%>
<%

/foreach

%><input type="submit" Value="Submit">

</form>

</body></html>

You can also use keys. Note that here the keys do not require to be enclosed in quotation
marks:

<html><body><%

// set to posted values or an empty array

$cks=Request.Post['ck'] || {}

echo $cks // Show the contents of the array

$flds={'1st'=>'One','2nd'=>'Two','3rd'=>'Three'}

%><form method="POST" ><%

foreach $flds

 // keep the checkboxes checked that were checked by the user

%><%=$_Index%>

 <input type="checkbox" name="ck[<%=$_Key%>]" value="<%=$_Value%>"

<%=$cks.ContainsKey($_key)?' checked':''%>>

 <%=$_Value%>
<%

/foreach

%><input type="submit" Value="Submit">

</form>

</body></html>

- Experimental and Preliminary -

Version 2.20 : 2011-10-06 Plugwise B.V. 31

Browser sessions
The engine uses a server side cookie called ‘_PLUSID_ ‘ to store the session id of the http
client (i.e. browser). If the client does not support cookies, you can create a session by
adding a ‘_PLUSID_’ parameter with a (unique) value to the URL:

 http://server:8080/sessiontest.html?_PLUSID_=12345

Syntax highlighting
No editor supports the PTE syntax by default, but most will do a decent job when the syntax
is set to PHP. In our experience PSPad (http://www.pspad.com/) handles this very well.
Start PSPad and open the program setting dialog via Settings  Program Settings
In left column select Multihighlighter

- Check Enable HTML Multi-highlighter
- Set For <%..%> use to PHP
- Under Open in Multi-highlighter check PHP

Optionally you can make PSPad the default editor for PTE files:
In left column select Registered File Types

- Under Type: fill in .pte and press Add New

	Introduction
	Installation
	The Basics
	Handling of 404(_catch404.pte)
	Variables
	Casting
	Array
	Bool
	DateTime
	Float
	String
	Keywords
	Engine objects
	Plugwise Objects
	Built-in icons
	Generating graphs
	General remarks

